
TSEEQ: The Structured ETL Engine for Qlik Version 3.1.2 Page 1 of 20

TSEEQ: The Structured ETL Engine for Qlik

Version 3.1.2

Qlik Consulting Services

Document Author: Jeff R. Robbins

Document Date: March 15, 2018

Email: Jeff.Robbins@qlik.com; jr@qlikperf.com

Ask, and it shall be given you; seek, and ye shall find; knock, and it shall be opened unto you.

(Matthew 7:7, King James Version)

We provide TSEEQ (pronounced “seek”) in the hope that it will be useful, but without any warranty or guaranteed level of
support.

mailto:QlikConsultingUSA@qlik.com;%20Jeff%20Robbins%20%3cJeff.Robbins@qlik.com%3e;%20jr@qlikperf.com?subject=TSEEQ%20query:%20The%20Structured%20ETL%20Engine%20for%20Qlik

TSEEQ: The Structured ETL Engine for Qlik Version 3.1.2 Page 2 of 20

Contents
Introduction ... 3

TSEEQ In Comparison to Traditional Embedded Scripting ... 3

Technical Architecture ... 4

Instructions for the TSEEQ Sales Sample: .. 5

File Extraction Instructions (Both Qlik Sense and QlikView) ... 5

ETL Execution Instructions (QlikView) .. 5

ETL Execution Instructions (Qlik Sense) ... 6

Validating Successful ETL Execution .. 8

Creating New App Folders from the TSEEQ Sales Sample:.. 8

Enabling Additional Rules & The GENERATE ONLY Mode .. 9

Documentation Within in the ETL QVFs and QVWs .. 10

Documentation Within in the XLS Files ... 10

ETL Statistics (Most Recent Execution) .. 11

ETL Statistics (Historical) .. 12

Considerations on 3-Tier vs 4-Tier Data Architectures .. 13

ApplyMap Example ... 14

Notes on the vApp Variable... 15

Appendix 1: More About TES, TeXas and TSEEQ .. 17

Starting out with TES (Traditional Embedded Script) ...17

Streamlining the SDLC with Texas (Traditional Externalized Script) ..18

Stepping Beyond Texas with TSEEQ, The Structured ETL Engine for Qlik ...19

Appendix 2: Utilities Included with TSEEQ .. 20

The QVD LooQer ..20

Please note that TSEEQ was formerly spelled SEEQ (no initial “T”); some screen shots, file names and variables may still
reflect this older spelling in the near term.

TSEEQ: The Structured ETL Engine for Qlik Version 3.1.2 Page 3 of 20

Introduction
TSEEQ (pronounced “seek”), The Structured ETL Engine for Qlik, implements centralized management of Extract, Transform and
Load (ETL) operations that provide data to QlikView and Qlik Sense applications. Primary benefits of TSEEQ are:

• Governance: ETL operations are defined in external (and therefore very manageable) rule sets.

• Self-Service: Business users may easily define and modify ETL operations in sandbox environments.

• Performance: A profiler enables efficient ETL execution.

• Migration: ETL rule sets for QlikView can be used without modification for Qlik Sense (and vice versa).

• Integration: Data from multiple sources is conformed and integrated to create a consolidated data model.

• Productivity: The core ETL engine and its surrounding utilities automate time-consuming tasks.

TSEEQ In Comparison to Traditional Embedded Scripting
The distinguishing characteristic of TSEEQ versus Traditional Embedding Scripting (TES) is that in TSEEQ, externalized rules (diagram
above) provide a structured source of ETL control; in TES, free-form textual ETL script is embedded within Qlik application files (QVWs
in QlikView and QVFs in Qlik Sense). We can conceptualize TES as shown in the diagram below:

TSEEQ: The Structured ETL Engine for Qlik Version 3.1.2 Page 4 of 20

Note: TSEEQ and TES are not mutually exclusive; a hybrid approach is useful in many cases. Another approach, TeXas, is also useful.

Technical Architecture
TSEEQ reads ETL rules from a
metadata store and then automatically
generates and executes Qlik script to
build QVDs and QlikView or Qlik Sense
data models.

1. TSEEQ implements the concept of
common components, including
both data and code, that are shared
among multiple applications.
Common components from a typical
TSEEQ deployment are shown in
the left and center of the diagram at
right.

2. TSEEQ does not provide a graphical
drawing tool for data flows; rather,
the Qlik Developer defines ETL
rules in the tabular metadata store.

a. The metadata store is by default
a set of Excel spreadsheets; a
relational database may be used
instead of Excel.

b. Despite the lack of a drawing
tool, TSEEQ ETL rules are
easily created by modifying
sample rules provided in the
TSEEQ Sales Sample (detailed
next page).

3. Field transformation rules are Qlik
expressions; TSEEQ is an
abstraction layer on top of the Qlik
scripting engine.

4. Since TSEEQ is a set of script routines executing in the context of a QVW or QVF, standard Publisher or Qlik Sense tasks are the
scheduling mechanism.

TSEEQ: The Structured ETL Engine for Qlik Version 3.1.2 Page 5 of 20

Instructions for the TSEEQ Sales Sample:
The TSEEQ Sales Sample, contained within TSEEQ.zip, provides an end-to-end working example of a TSEEQ ETL flow that can be
executed and modified for learning purposes, as well as serve as a template with which to implement TSEEQ ETL flows for
additional applications.

File Extraction Instructions (Both Qlik Sense and QlikView)
1. Identify a network share to which your development team has read and

write access.

a. Note that for single developer scenarios (such as prototyping in a
private sandbox using QlikView or Qlik Sense Desktop), a local
path, ex C:\TSEEQ, can be used in lieu of a network share.
However, the remainder of this document assumes the use of a
network share.

b. The screen shot at right shows a share named \\w2008001\share;
your actual share name will likely differ. You can use a sub-folder
within a share if preferred.

2. For the rest of this document, ~\ refers to the share or preferred sub-
folder within a share that you identified.

3. Extract the TSEEQ ZIP file to ~\.

4. Under ~\, you should then see a TSEEQ folder with constituent sub-folders, as shown in the screen shot at right.

ETL Execution Instructions (QlikView)
1. For QlikView, to run the whole data flow for a Sales demo application, simply double-click the 1-click ETL - Sales Demo.bat

file that is in the top-level ~\TSEEQ folder.

a. The Extract, Transform and Load process for the TSEEQ Sales Sample will then automatically execute.

b. (Hint: if prompted to with a Save As dialog, just click Save to overwrite the old file and click Yes when prompted if you
want to replace the file.)

file://///w2008001/share
https://github.com/qlikperf/TSEEQ/releases

TSEEQ: The Structured ETL Engine for Qlik Version 3.1.2 Page 6 of 20

ETL Execution Instructions (Qlik Sense)
Below, you only need to complete Step 1 OR Step 2, depending on the Qlik Sense product you are
using:

1. For QlikSense Server, use the QMC to import each of the 3 QVFs under ~\TSEEQ\Source
Documents\TSEEQ Sales Sample, from each of the step-specific sub-folders (01_Extract,
02_Transform and 03_Load).

2. For Qlik Sense Desktop, you can either:

a. Copy the ~\TSEEQ folder to c:\users\<user id>\Documents\Qlik\Sense\Apps.
OR

b. Point c:\users\<user id>\user folder>\Documents\Qlik\Sense\Settings.ini to ~\TSEEQ.

• Please see this link for instructions: https://community.qlik.com/thread/158503

OR

c. Use a junction point to re-direct c:\users\<user id>\Documents\Qlik\Sense\Apps to ~\TSEEQ.

• Please see this link for instructions:
https://en.wikipedia.org/wiki/NTFS_junction_point#Creating_or_deleting_a_junction_point

3. Next, create the folder data connections. You will need to create the connections in the Data Load
Editor (whether in Qlik Sense Desktop or Server). Qlik Sense server users should also use the
QMC to strip out the (<directory>_<userid>) postfix from each connection name. Connections
should be defined as follows:

a. Admin: folder connection pointing to ~\TSEEQ\Source Documents\Admin.

b. Sales: folder connection pointing to ~\TSEEQ\Source Documents\TSEEQ Sales Sample.

c. Common: folder connection pointing to ~\TSEEQ\Source Documents\Common.

https://community.qlik.com/thread/158503
https://en.wikipedia.org/wiki/NTFS_junction_point%23Creating_or_deleting_a_junction_point

TSEEQ: The Structured ETL Engine for Qlik Version 3.1.2 Page 7 of 20

4. Next, create a new OLE DB connection, named QWT, configured

as shown in the screen shot at right.

a. Provider set to Microsoft Jet 4.0 OLE DB Provider (32-bit).

b. Data source set to ~\TSEEQ\TSEEQ Sales Sample Source
Database\QWT.mdb.

c. Choose Specific user name and password, and leave the
Username and Password blank.

d. Specify a Name of QWT.

e. Click Create.

5. Open the Data Load Editor and press load data, for each of the
following apps in sequence:

1. Sales Extract

2. Sales Transform

3. Sales DataModel

TSEEQ: The Structured ETL Engine for Qlik Version 3.1.2 Page 8 of 20

Validating Successful ETL Execution
Successful TSEEQ execution can be validated
within both QlikView and Qlik Sense by viewing the
Performance Profile and Execution Trace tables
within the ETL QVWs and QVFs.

The screen shot at right shows the Execution
Trace from the included Sales Transform QVF for
Qlik Sense (a similar table is provided in the Sales
Transform QVW for QlikView, as well as the Sales
Extract and Sales DataModel QVWs and QVFs).

Creating New App Folders from the TSEEQ Sales Sample:
After you have successfully run and validated the end-to-end ETL flow provided within the TSEEQ Sales Sample as discussed on the
prior pages, you may wish to replicate the folder structure of the TSEEQ Sales Sample for use with additional applications1. To facilitate
this folder structure replication, you may run the batch files under ~\TSEEQ\Utility\Folder Creation BAT.

Please note that:

1. TSEEQ does not require any specific folder structure be used; TSEEQ
can be adapted to an existing folder structure if one is already in place.

2. With Qlik Sense Server, the folder structure is less relevant than with
QlikView; Qlik Sense Server stores all “apps” (QVFs) in a repository and
therefore the concept of a folders does not apply for QVFs (with the one
exception being a BINARY LOAD of a QVF via a folder connection). In
Qlik Sense, the concept of folders only applies to data files (such as
XLSX and QVD) and externalized script that is brought in with an
INCLUDE statement.

1 A later section of this document defines terms such as “app” and “application” a bit more explicitly.

TSEEQ: The Structured ETL Engine for Qlik Version 3.1.2 Page 9 of 20

Enabling Additional Rules & The GENERATE ONLY Mode
Please note the included sample rules files under the following folder: ~\Source Documents\TSEEQ Sales Sample\ETL_Rules.

By default, TSEEQ generates and executes ETL script for those rules where ENABLED is set to Y. The currently enabled rules are
those which operate upon the included sample database (~\TSEEQ Sales Sample Source Database\QWT.mdb).

TSEEQ will not generate and execute ETL script rules where ENABLED is set to N, since a corresponding sample database is not
included in the TSEEQ zip file. However, you may optionally enable those rules by

1. changing ENABLED to Y, and then

2. uncommenting the following line in on the 01-Main script tab: // SET vTSEEQ_Mode = 'GENERATE ONLY';

TSEEQ will then generate, but not execute, ETL script, thereby allowing you to see how TSEEQ creates ETL script for a wider variety
of ETL rules.

TSEEQ: The Structured ETL Engine for Qlik Version 3.1.2 Page 10 of 20

Documentation Within in the ETL QVFs and QVWs

As shown in the screen shot, the script within each of the TSEEQ Sales Sample QVFs (Qlik Sense) and QVWs (Qlik View) is
extensively commented (comment lines outnumber actual code lines by over 3-to-1). Information from those intra-QV* comments is
not replicated in its entirety within this document. As such, developers are referred to the intra-QV* comments for additional
information on the script within the QV* files.

Documentation Within in the XLS Files
As shown in the screen shot,
each column and row within
the XLS files in the TSEEQ
Sales Sample contains
embedded documentation.
This documentation is not
replicated in its entirety within
this document. As such, Qlik
developers are referred to the
intra-XLS documentation
within the TSEEQ Sales
Sample:

TSEEQ: The Structured ETL Engine for Qlik Version 3.1.2 Page 11 of 20

ETL Statistics (Most Recent Execution)
In the TSEEQ Sales Sample, ETL Statistics for the most recent execution shown in within the respective Extract, Transform and
Load QVFs (Qlik Sense) and QVWs (QlikView).

The screen shot immediately below shows a view of the Qlik Sense statistics on the left and the QlikView statistics on the right.

TSEEQ: The Structured ETL Engine for Qlik Version 3.1.2 Page 12 of 20

ETL Statistics (Historical)
ETL statistics for the past 100,000 ETL operations are analyzed in the ~\Admin\4_App\ETL Analysis QVW and QVF.

The screen shot shown below is from the ETL Analysis QVW QlikView; a similar sheet is provided in Qlik Sense by the ETL
Analysis QVF.

Note that for Qlik Sense Server, ~\Admin\4_App\ETL Analysis.qvf will need to be imported via the QMC prior to first use.

TSEEQ: The Structured ETL Engine for Qlik Version 3.1.2 Page 13 of 20

Considerations on 3-Tier vs 4-Tier Data Architectures
TSEEQ allows for both 4-tier (separate files for data model and dashboard) and 3-tier (single file for data model and dashboard)
architectures. The 4-tier approach provides more modularization, but in Qlik Sense, 4-tier typically requires that the repository Apps
folder be mapped to a folder data connection.

As such, the 3-tier approach may be preferred in some cases. Note that in the 4-tier approach, any single data model is a re-usable
asset that can consumed by multiple dashboards. In the 3-tier approach, the consumable data model concept is not used; however,
a single set of Load Rules (which define a data model) may be consumed by multiple dashboards. All dashboards consuming any
specific Load Rule set will contain identical table structures and data sets.

TSEEQ: The Structured ETL Engine for Qlik Version 3.1.2 Page 14 of 20

ApplyMap Example
TSEEQ includes an example Transform rule set implementing the Qlik ApplyMap() functionality:

 ~\Source Documents\TSEEQ Sales Sample\ETL_Rules\ApplyMap Transform Rule Example.xls

1. The mapping table can be loaded from either a QVD or from an EXTERNAL file (XLS*, CSV, etc). The example uses an XLS file
(EmpOff.xls).

2. MAPPING LOAD, not simply LOAD, is the Load Command for the mapping table.

3. INCLUDE_SUBSET is required in the Fields column, if the source has more than 2 fields. If the source only has two fields, you
could just use ALL in the Fields column, if those two fields are ordered with the key first and the mapped value second.

4. The Keep or Drop option does not apply, since Qlik will automatically drop the mapping table. You can specify KEEP, but Qlik will
still drop the table.

5. A TRANSFORM_FIELDS rule applies the map.

https://community.qlik.com/blogs/qlikviewdesignblog/2012/09/18/one-favorite-function-applymap

TSEEQ: The Structured ETL Engine for Qlik Version 3.1.2 Page 15 of 20

Notes on the vApp Variable
Qlik Sense developers should note that
the TSEEQ vApp variable is not
equivalent to the Qlik Sense concept of
“app”.

• In Qlik Sense, an “app” corresponds
to a single QVF on disk. In Qlik Sense
Desktop, this QVF is visible in the
developer’s local file system; in Qlik
Sense Server, the QVF is within a
centralized repository and therefore
somewhat hidden.

• We should precisely define what
“application” refers to in the following
paragraphs: “application” is deployed
software that the end user interacts
directly with, for example, the
Financial Dashboard. Technically
speaking, an “application” is
implemented by a set of files
(including one or more QVFs or
QVWs), but the end user does not
have file-level visibility.

• In TSEEQ, vApp is not a single file,
but rather the prefix to multiple file
names. vApp does not refer to an
“app” in the sense of a QVF; rather,
vApp refers to the set of files that
implement a group of applications.

In the Sample TSEEQ Data Architecture (diagram at right), vApp = ‘Financial’; the corresponding group of applications includes
the Financial Dashboard and the Executive Dashboard. All back-end file names in the build chain (which end users do not see) are
prefixed with ‘Financial’, the value of vApp.

In this example, the Financial and Executive dashboards were initially conceived of as two separate initiatives; after some analysis, we
realized that the Executive dashboard had high requirements overlap with the Financial and therefore based the Executive on the
Financial build chain.

TSEEQ: The Structured ETL Engine for Qlik Version 3.1.2 Page 16 of 20

Note that the Extract, Transform, and DataModel QVFs in the Example TSEEQ Data Architecture (diagram on previous page) are
all persisted as QVFs and are therefore considered “apps” from the Qlik Sense perspective. However, these back-end QVFs are not
exposed to end users and are therefore not what we would refer to as “applications”.

So, to put this to code: suppose that there is a set of variables that every Financial-related QVF must read in, regardless of the QVF’s
vPurpose (EXTRACT, TRANSFORM, data model LOAD, or front-end dashboard APP). Then, we could create a file,
FinancialVariables.xls, and each of the financial QVFs could read in the variables with the following code:

 /***

 Load financial-specific variable definitions:

 **/

 call Load_Variables_from_XLS('$(vVariablePath)FinancialVariables.xls', 'Sheet1');

We could further genericize this code:

 /***

 Load app-specific variable definitions:

 **/

 call Load_Variables_from_XLS('$(vVariablePath)$(vApp)Variables.xls', 'Sheet1');

And the same single line of code immediately above could conceivably be used in every QVF that needs to read in vApp-specific
variables: All Sales QVFs would read the Sales variables; all Financial QVFs would read the Financial variables.

We wish your success with TSEEQ; please contact us with any questions! And if you’re still reading, there’s some additional info in the
Appendixes on the following pages!

mailto:QlikConsultingUSA@qlik.com;%20Jeff%20Robbins%20%3cJeff.Robbins@qlik.com%3e;%20jr@qlikperf.com?subject=TSEEQ%20query:%20The%20Structured%20ETL%20Engine%20for%20Qlik

TSEEQ: The Structured ETL Engine for Qlik Version 3.1.2 Page 17 of 20

Appendix 1: More About TES, TeXas and TSEEQ

Starting out with TES (Traditional Embedded Script)
Many Qlik apps are built with a 3-tier data architecture as shown in this diagram:

In this 3-Tier TES architecture, Extractor “apps” query data sources to create the first QVD layer (“Extracted Data”). Transform apps

then aggregate, cleanse and/or de-normalize the Extracted Data to create the second QVD layer (“Transformed Data”), which is read

directly by dashboards.

This 3-Tier architecture promotes data re-use and efficiency; a table need only be pulled from the database once to populate the

Extracted Data layer. And data typically needs to be only read once from the Extracted Data layer to be cleansed and then added to

the Transformed Data layer, from where it can feed multiple Dashboards. Voila, we have data re-use!

However, embedding script in the Extractors and Transformers results in cross-environment promotion complexity:

• In Qlik Sense Server, the Extractors, Transformers and Dashboards are all “apps” that reside in a Qlik Sense repository. If for

a given Dashboard, the script in the associated Extractors and Transformers changes, then in a cross-environment migration

(ex Dev to Test) scenario, all Extractors and Transformers associated to a migrating Dashboard must be manually exported

from the source environment (Dev) and then manually imported into the target environment (Test).

• With QlikView Server, the “apps” are QVW files that are readily visible on the file system. However, QVWs are stored in a

binary format; version control of the embedded ETL scripts is therefore a challenge2.

Luckily, we can greatly mitigate these concerns by supplementing the traditional embedded script with more a manageable,

externalized approach, as discussed on the next page.

2 The Project Folder technique allows decomposition of a QVW into XML and text files that are better suited to version control than are binary QVWs.
However, discussion of that technique is outside the scope of this document; on the next page, we discuss “TeXas”, a very light weight and efficient
way to enable version control of the ETL script exclusively.

https://help.qlik.com/en-US/qlikview/November2017/Subsystems/Client/Content/QlikView_Project_Files.htm

TSEEQ: The Structured ETL Engine for Qlik Version 3.1.2 Page 18 of 20

Streamlining the SDLC with Texas (Traditional Externalized Script)

With TeXas, the ETL scripts that are executed are the same as with TES, it’s just that the ETL scripts are persisted in text files that are

external to Qlik apps; in the case of Qlik Sense, the scripts are therefore external to the Qlik Sense repository.

Recall that with TES (Traditional Embedded Script) as discussed on the prior page, the ETL script is embedded within “apps”, each of

which is a binary filed stored within the Qlik Sense repository. With TES, cross-environment Dashboard promotion requires, for each

associated Extractor and Transformer app, an export from the source environment followed by an import into the target environment.

With TeXas, cross environment promotion of a given Dashboard rarely requires cross-environment promotion of the associated

Extractors and Transformers. Rather, the externalized scripts referenced by the Extractors and Transformers are the assets to be

promoted.

Since the externalized scripts are simply text files in a Windows file system, they do not require the export-import step that is required

for Qlik Sense app promotion. Rather, the externalized script files can be easily managed in a source control system (SubVersion, TFS,

etc) and promoted from one environment to another with a simple file copy.

TSEEQ: The Structured ETL Engine for Qlik Version 3.1.2 Page 19 of 20

Stepping Beyond Texas with TSEEQ, The Structured ETL Engine for Qlik

TSEEQ (pronounced “seek”), The Structured ETL Engine for Qlik, implements centralized management of Extract, Transform and
Load (ETL) operations that provide data to Qlik Dashboards.

As with TeXas, the assets that define TSEEQ ETL operations are external to Qlik Sense apps; however, TSEEQ uses tabular ETL
rule definitions, rather than the free-form scripting used in TeXas.

Note that TES, TeXas, and
TSEEQ are not mutually
exclusive; a hybrid approach is
feasible and useful in many cases.
Any single Extractor or
Transformer “app” (QVW or QVF)
can use all three approaches; a
single app might contain
embedded script, reference
externalized script, and execute a
TSEEQ rules file3.

3 Astute readers might point out that both TeXas and TSEEQ use embedded script, specifically just enough embedded script to reference the
required external files. However, this small amount of embedded script rarely, if ever, changes. TES by contrast, typically entails a significant amount
of frequently changing embedded script.

TSEEQ: The Structured ETL Engine for Qlik Version 3.1.2 Page 20 of 20

Appendix 2: Utilities Included with TSEEQ
Several utilities are included under ~\TSEEQ\Utilities. Documentation for these utilities is largely embedded with the utilities
themselves, in the form of intra-script comments.

Where available, more formalized documentation for each of these utilities is linked immediately below.

The QVD LooQer
The QVD LooQer enables fast and convenient viewing of QVD contents, with no additional associated software licensing costs.
Documentation for this utility can be found On GitHub at this link: https://github.com/qlikperf/TSEEQ/blob/master/Utility/QVD%20LooQer/Readme%20QVD%20LooQer.pdf

https://github.com/qlikperf/TSEEQ/blob/master/Utility/QVD%20LooQer/Readme%20QVD%20LooQer.pdf

